Optimization of Gene Expression Programming Model using Wavelet Transform for Simulating Long-term Rainfall in Anzali City
نویسندگان
چکیده مقاله:
Due to drought and climate change, estimation and prediction of rainfall is quite important in various areas all over the world. In this study, a novel artificial intelligence (AI) technique (WGEP) was developed to model long-term rainfall (67 years period) in Anzali city for the first time. This model was combined using Wavelet Transform (WT) and Gene Expression Programming (GEP) model. Firstly, the most optimized member of wavelet families was chosen. Then, by analyzing the numerical models, the most accurate linking function and fitness function were selected for the GEP model. Next, using the autocorrelation function (ACF), the partial autocorrelation function (PACF) and different lags, 15 WGEP models were introduced. The GEP models were trained, tested and validated in 37, 20- and 10-years periods, respectively. Also, using sensitivity analysis, the superior model and the most effective lags for estimating long-term rainfall were identified. The superior model estimated the target function with high accuracy. For instance, correlation coefficient and scatter index for this model were 0.946 and 0.310, respectively. Additionally, lags 1, 2, 4 and 12 were proposed as the most effective lags for simulating rainfall using hybrid model. Furthermore, results of the superior hybrid model were compared with GEP model that the hybrid model had more accuracy.
منابع مشابه
Improvement of Gene Expression Programming Model Performance using Wavelet Transform for the Estimation of Long-Term Rainfall in Rasht City
Rainfall may be considered as the most important source of drinking water and watering land in different areas all over the world. Therefore, simulation and estimation of the hydrological phenomenon is of paramount importance. In this study, for the first time, the long-term rainfall in Rasht city was simulated using an optimum hybrid artificial intelligence (AI) model over a 62 year period fro...
متن کاملPrediction of Blasting Cost in Limestone Mines Using Gene Expression Programming Model and Artificial Neural Networks
The use of blasting cost (BC) prediction to achieve optimal fragmentation is necessary in order to control the adverse consequences of blasting such as fly rock, ground vibration, and air blast in open-pit mines. In this research work, BC is predicted through collecting 146 blasting data from six limestone mines in Iran using the artificial neural networks (ANNs), gene expression programming (G...
متن کاملmetrics for the detection of changed buildings in 3d old vector maps using als data (case study: isfahan city)
هدف از این تحقیق، ارزیابی و بهبود متریک های موجود جهت تایید صحت نقشه های قدیمی سه بعدی برداری با استفاده از ابر نقطه حاصل از لیزر اسکن جدید شهر اصفهان می باشد . بنابراین ابر نقطه حاصل از لیزر اسکنر با چگالی حدودا سه نقطه در هر متر مربع جهت شناسایی عوارض تغییر کرده در نقشه های قدیمی سه بعدی استفاده شده است. تمرکز ما در این تحقیق بر روی ساختمان به عنوان یکی از اصلی ترین عارضه های شهری می باشد. من...
Forecasting copper price using gene expression programming
Forecasting the prices of metals is important in many aspects of economics. Metal prices are also vital variables in financial models for revenue evaluation, which forms the basis of an effective payment regime using resource policymakers. According to the severe changes of the metal prices in the recent years, the classic estimation methods cannot correctly estimate the volatility. In order to...
متن کاملthe use of appropriate madm model for ranking the vendors of mci equipments using fuzzy approach
abstract nowadays, the science of decision making has been paid to more attention due to the complexity of the problems of suppliers selection. as known, one of the efficient tools in economic and human resources development is the extension of communication networks in developing countries. so, the proper selection of suppliers of tc equipments is of concern very much. in this study, a ...
15 صفحه اولA Chance Constrained Integer Programming Model for Open Pit Long-Term Production Planning
The mine production planning defines a sequence of block extraction to obtain the highest NPV under a number of constraints. Mathematical programming has become a widespread approach to optimize production planning, for open pit mines since the 1960s. However, the previous and existing models are found to be limited in their ability to explicitly incorporate the ore grade uncertainty into the p...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 25 شماره 1
صفحات 27- 42
تاریخ انتشار 2021-05
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی برای این مقاله ارائه نشده است
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023